
Assignment 7 
1. Apply two steps of Newton’s method to find a simultaneous root of the following system of two algebraic 

equations starting with the approximation x = y = 0.5. 

  x2 + 4y2 – x + y – 1 = 0       

3x2 + 2y2 + x – y – 2 = 0       

The Jacobian is the matrix with the first row being (2x – 1, 8y + 1) and the second row (6x + 1, 4y – 1). 

In MATLAB, we can code the function and the Jacobian as follows; although you can do it by hand, too, 

>> f = @(u)([ u(1)^2 + 4*u(2)^2 - u(1) + u(2) – 1 
              3*u(1)^2 + 2*u(2)^2 + u(1) - u(2) – 2 ]); 
>> J = @(u)([ 2*u(1) - 1, 8*u(2) + 1 
              6*u(1) + 1, 4*u(2) – 1 ]); 
>> u0 = [0.5; 0.5]; 
>> f(u0) 
       0.25 
      -0.75 
 
>> % First iteration 
>> du0 = J(u0) \ -f(u0) 
    du0 = 
       0.2 
      -0.05 
>> u1 = u0 + du0 
    u1 = 
       0.7 
       0.45 
>> f(u1)     % This should be smaller 
       0.05 
       0.125 
 
>> % Second iteration 
>> du1 = J(u1) \ -f(u1) 
    du1 = 
      -0.02266949152542365 
      -0.008898305084745780 
>> u2 = u1 + du1 
    u2 = 
       0.6773305084745763 
       0.4411016949152542 
>> f( u2 )   % This should be even smaller 
    ans = 
       0.0008306251795462405 
       0.001700077204826567 
 

  



2. Apply one step of Newton’s method to find a simultaneous root of the following system of three algebraic 

equations starting with the approximation x = y = –0.5 and z = 1. 

              3x2 + x – xy – 2y – 1 = 0       

2x + 2y2 + xy – y + z – yz – 2 = 0       

                    y – 2z + yz + 3z2 = 0       

The Jacobian is the matrix with the first row being (6x + 1 – y, –x – 2, 0), the second (2 + y, 4y + x – 1 – z, 

1 – y), and the third (0, 1 + z, –2 + y + 6z). 

Two iterations are performed for interest: 

f = @(u)([ 3*u(1)^2 + u(1) - u(1)*u(2) - 2*u(2) - 1 
           2*u(1) + 2*u(2)^2 + u(1)*u(2) - u(2) + u(3) - u(2)*u(3) - 2 
           u(2) - 2*u(3) + u(2)*u(3) + 3*u(3)^2 ]); 
J = @(u)([ 6*u(1) + 1 - u(2), -u(1) - 2,                  0 
           2 + u(2),           4*u(2) + u(1) - 1 - u(3),  1 - u(2) 
           0,                  1 + u(3),                 -2 + u(2) + 6*u(3)]); 
u0 = [-0.5; -0.5; 1]; 
f( u0 ) 
   0 
  -0.25 
   0 
 
% First iteration 
du0 = J(u0) \ -f(u0) 
    du0 = 
      0.03645833333333333 
     -0.03645833333333333 
      0.02083333333333333 
 
u1 = u0 + du0 
    u1 = 
     -0.4635416666666667 
     -0.5364583333333334 
      1.020833333333333e 
 
f( u1 ) 
      0.005316840277777901 
      0.002088758680555358 
      0.0005425347222214327 
 
 
% Second iteration 
du1 = J(u1) \ -f(u1) 
    du1 = 
      0.002900757102792720 
      0.001110347070392873 
     -0.0007764605660071837 
 
u2 = u1 + du1 
    u2 = 
      -0.4606409095638740 
      -0.5353479862629404 
       1.020056872767326 
 
f( u2 ) 
       0.00002202232815706751 
       0.000006548729099442596 
       0.0000009465323174140394 



3. Apply one step of Newton’s method to find a simultaneous root of the following system of two algebraic 

equations starting with the approximation x = 1 and y = 1.5 . 

sin(x)   + 2 cos(xy) = 1       

sin(xy) – 2 cos(y)   = 1       

The Jacobian is the matrix with the first row being (cos(x) – 2sin(xy)y, –2sin(xy)x) and the second 

(cos(xy)y, cos(xy)x + 2sin(y)). 

Two iterations are performed for interest: 

f = @(u)([ sin(u(1))      + 2*cos(u(1)*u(2)) - 1 
           sin(u(1)*u(2)) - 2*cos(u(2)) – 1 ]); 
J = @(u)([ cos(u(1)) - 2*sin(u(1)*u(2))*u(2), -2*sin(u(1)*u(2))*u(1) 
           cos(u(1)*u(2))*u(2), cos(u(1)*u(2))*u(1) + 2*sin(u(2)) ]); 
u0 = [1.0; 1.5]; 
f( u0 ) 
      -0.01705461185669765 
      -0.1439794167313514 
 
% First iteration 
du0 = J(u0) \ -f(u0) 
    du0 = 
      -0.06643530009365024 
       0.07311158482063311 
u1 = u0 + du0 
    u1 = 
       0.9335646999063497 
       1.573111584820633 
f( u1 ) 
       0.007780124676444178 
      -0.0005868419391285018 
 
du1 = J(u1) \ -f(u1) 
    du1 = 
       0.003034353204493463 
       0.00004766817273407990 
u2 = u1 + du1 
    u2 = 
       0.9365990531108431 
       1.573159252993367 
f( u2 ) 
      -0.000006321773508011219 
      -0.00001153324122649124 
  



4. Recall the difference between Newton’s method and the secant method for a single algebraic equation in 

a single variable. Suppose instead, you did not have the derivative. How would you generalize the secant 

method for two algebraic equations in two variables, or n algebraic equations in n variables? Recall that a 

plane is defined by three points. 

As a plane is defined by three points, we could start with three initial points x0, x1 and x2 and then for the 

first function, f1, we could find a tangent plane passing through (x0,  f1(x0)), (x1,  f1(x1)) (x2,  f1(x2)) and for 

the second function, f2, we could find a similar tangent plane. Recall that a plane is a function of the form  

(x) = ax1 + bx2 + c, so to pass through three points, we require that  

ax0,1 + bx0,2 + c = f1(x0) 

ax1,1 + bx1,2 + c = f1(x1) 

ax2,1 + bx2,2 + c = f1(x2) 

This is a system of three equations and three unknowns, and thus, in general, has a solution, and this defines 

a plane. We could do this for f2, as well. With two secant planes, we can find a simultaneous solution or 

root, and hence that solution is x3.  

  



5. Suppose you have the ordinary differential equation y(1)(t) = sin(y(t)) and you know that y(0) = 1 and 

y(0.1) = 1.086355758991046. Use a cubic spline to approximate y(0.05). 

First, calculating  = (0.05 – 0)/(0.1 – 0) = 0.5. 

We need to solve the system of linear equations 

 

 

0 0 0 1 1

0 0 1 0 0.1 sin 1

1 1 1 1 1.086355758991046

3 2 1 0 0.1 sin 1.086355758991046

 
 

 
 
   

 

Thus, we have  

A = [0 0 0 1; 0 0 1 0; 1 1 1 1; 3 2 1 0] 
      A = 0       0       0       1 
          0       0       1       0 
          1       1       1       1 
          3       2       1       0 
 
>> b = [1 0.1*sin(1) 1.086355758991046 0.1*sin(1.086355758991046)]' 
      b = 1 
          0.08414709848078966 
          1.086355758991046 
          0.08849356226254429 
 
p = A \ b 
      p = -0.00007085723875786790 
           0.002279517749014116 
           0.08414709848078966 
           1 
 
polyval( p, 0.5 ) 
      1.042634571522804 
 
  



6. Suppse you knew that y(a) = ya, y(b) = yb, y(1)(a) = ya
(1), y(1)(b) = yb

(1), y(2)(a) = ya
(2), y(2)(b) = yb

(2). Write 

down the system of linear equations that would find the quintic (degree five) polynomial that satisfies these 

conditions. 

The quintic polynomial is p(t) = at5 + bt4 + ct3 + dt2 + et + f, and its first and second derivatives are 

p(1)(t) = 5at4 + 4bt3 + 3ct2 + 2dt + e 

p(2)(t) = 20at3 + 12bt2 + 6ct + 2d 

Now, we scale and shift to 0 and 1 so that our algorithm can be re-used, Thus, the slopes will be modified 

by h and the concavities by h2, so we have 

p(0) = ya, p(1)(0) = hya
(1), p(2)(0) = h2ya

(2), p(1) = ya, p(1)(1) = hya
(1), p(2)(1) = h2ya

(2) 
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7. Using Euler’s method, approximate y(1) with h = 0.2 and again with h = 0.1 for the initial-value problem 

defined by 

     

 

1
2 1

0 1

y t y t t

y

  


  

a = 0; 
b = 1; 
t0 = 0; 
y0 = 1; 
f = @(t, y)(2*y + t - 1); 
h = 0.2; 
N = 5; 
ts = a:h:b; 
ys = zeros( 1, N + 1 ); 
ys(1) = y0; 
for k = 1:N 
    ys(k + 1) = ys(k) + h*f(ts(k), ys(k)); 
end 
ys 
   ys = 1 1.2 1.52 2.008 2.7312 3.7837 
 
h = 0.1; 
N = 10; 
tss = a:h:b; 
yss = zeros( 1, N + 1 ); 
yss(1) = y0; 
for k = 1:N 
    yss(k + 1) = yss(k) + h*f(tss(k), yss(k)); 
end 
yss 
   yss = 1 1.1 1.23 1.396 1.6052 1.8662 2.1895 2.5874 3.0749 3.6698 4.3938 
         
 
 
8. In Question 7, you approximated y(0.2) with h = 0.2, and y(0.1) with h = 0.1. The correct solutions to 

sixteen significant digits are y(0.2) = 1.268868523230952 and y(0.1) = 1.116052068620128. Show that the 

error of one step of Euler’s method is O(h2) by showing that the error of your approximation at t = 0.1 is 

approximately one quarter the error at t = 0.2. 

The approximations are 1.2 and 1.1, respectively, and thus the errors are 0.068868523230952 and 

0.016052068620128, and we note that the second number is approximately one quarter the first. 
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