
Assignment 7
1. Apply two steps of Newton’s method to find a simultaneous root of the following system of two algebraic

equations starting with the approximation x = y = 0.5.

 x2 + 4y2 – x + y – 1 = 0

3x2 + 2y2 + x – y – 2 = 0

The Jacobian is the matrix with the first row being (2x – 1, 8y + 1) and the second row (6x + 1, 4y – 1).

In MATLAB, we can code the function and the Jacobian as follows; although you can do it by hand, too,

>> f = @(u)([u(1)^2 + 4*u(2)^2 - u(1) + u(2) – 1
 3*u(1)^2 + 2*u(2)^2 + u(1) - u(2) – 2]);
>> J = @(u)([2*u(1) - 1, 8*u(2) + 1
 6*u(1) + 1, 4*u(2) – 1]);
>> u0 = [0.5; 0.5];
>> f(u0)
 0.25
 -0.75

>> % First iteration
>> du0 = J(u0) \ -f(u0)
 du0 =
 0.2
 -0.05
>> u1 = u0 + du0
 u1 =
 0.7
 0.45
>> f(u1) % This should be smaller
 0.05
 0.125

>> % Second iteration
>> du1 = J(u1) \ -f(u1)
 du1 =
 -0.02266949152542365
 -0.008898305084745780
>> u2 = u1 + du1
 u2 =
 0.6773305084745763
 0.4411016949152542
>> f(u2) % This should be even smaller
 ans =
 0.0008306251795462405
 0.001700077204826567

2. Apply one step of Newton’s method to find a simultaneous root of the following system of three algebraic

equations starting with the approximation x = y = –0.5 and z = 1.

 3x2 + x – xy – 2y – 1 = 0

2x + 2y2 + xy – y + z – yz – 2 = 0

 y – 2z + yz + 3z2 = 0

The Jacobian is the matrix with the first row being (6x + 1 – y, –x – 2, 0), the second (2 + y, 4y + x – 1 – z,

1 – y), and the third (0, 1 + z, –2 + y + 6z).

Two iterations are performed for interest:

f = @(u)([3*u(1)^2 + u(1) - u(1)*u(2) - 2*u(2) - 1
 2*u(1) + 2*u(2)^2 + u(1)*u(2) - u(2) + u(3) - u(2)*u(3) - 2
 u(2) - 2*u(3) + u(2)*u(3) + 3*u(3)^2]);
J = @(u)([6*u(1) + 1 - u(2), -u(1) - 2, 0
 2 + u(2), 4*u(2) + u(1) - 1 - u(3), 1 - u(2)
 0, 1 + u(3), -2 + u(2) + 6*u(3)]);
u0 = [-0.5; -0.5; 1];
f(u0)
 0
 -0.25
 0

% First iteration
du0 = J(u0) \ -f(u0)
 du0 =
 0.03645833333333333
 -0.03645833333333333
 0.02083333333333333

u1 = u0 + du0
 u1 =
 -0.4635416666666667
 -0.5364583333333334
 1.020833333333333e

f(u1)
 0.005316840277777901
 0.002088758680555358
 0.0005425347222214327

% Second iteration
du1 = J(u1) \ -f(u1)
 du1 =
 0.002900757102792720
 0.001110347070392873
 -0.0007764605660071837

u2 = u1 + du1
 u2 =
 -0.4606409095638740
 -0.5353479862629404
 1.020056872767326

f(u2)
 0.00002202232815706751
 0.000006548729099442596
 0.0000009465323174140394

3. Apply one step of Newton’s method to find a simultaneous root of the following system of two algebraic

equations starting with the approximation x = 1 and y = 1.5 .

sin(x) + 2 cos(xy) = 1

sin(xy) – 2 cos(y) = 1

The Jacobian is the matrix with the first row being (cos(x) – 2sin(xy)y, –2sin(xy)x) and the second

(cos(xy)y, cos(xy)x + 2sin(y)).

Two iterations are performed for interest:

f = @(u)([sin(u(1)) + 2*cos(u(1)*u(2)) - 1
 sin(u(1)*u(2)) - 2*cos(u(2)) – 1]);
J = @(u)([cos(u(1)) - 2*sin(u(1)*u(2))*u(2), -2*sin(u(1)*u(2))*u(1)
 cos(u(1)*u(2))*u(2), cos(u(1)*u(2))*u(1) + 2*sin(u(2))]);
u0 = [1.0; 1.5];
f(u0)
 -0.01705461185669765
 -0.1439794167313514

% First iteration
du0 = J(u0) \ -f(u0)
 du0 =
 -0.06643530009365024
 0.07311158482063311
u1 = u0 + du0
 u1 =
 0.9335646999063497
 1.573111584820633
f(u1)
 0.007780124676444178
 -0.0005868419391285018

du1 = J(u1) \ -f(u1)
 du1 =
 0.003034353204493463
 0.00004766817273407990
u2 = u1 + du1
 u2 =
 0.9365990531108431
 1.573159252993367
f(u2)
 -0.000006321773508011219
 -0.00001153324122649124

4. Recall the difference between Newton’s method and the secant method for a single algebraic equation in

a single variable. Suppose instead, you did not have the derivative. How would you generalize the secant

method for two algebraic equations in two variables, or n algebraic equations in n variables? Recall that a

plane is defined by three points.

As a plane is defined by three points, we could start with three initial points x0, x1 and x2 and then for the

first function, f1, we could find a tangent plane passing through (x0, f1(x0)), (x1, f1(x1)) (x2, f1(x2)) and for

the second function, f2, we could find a similar tangent plane. Recall that a plane is a function of the form

(x) = ax1 + bx2 + c, so to pass through three points, we require that

ax0,1 + bx0,2 + c = f1(x0)

ax1,1 + bx1,2 + c = f1(x1)

ax2,1 + bx2,2 + c = f1(x2)

This is a system of three equations and three unknowns, and thus, in general, has a solution, and this defines

a plane. We could do this for f2, as well. With two secant planes, we can find a simultaneous solution or

root, and hence that solution is x3.

5. Suppose you have the ordinary differential equation y(1)(t) = sin(y(t)) and you know that y(0) = 1 and

y(0.1) = 1.086355758991046. Use a cubic spline to approximate y(0.05).

First, calculating = (0.05 – 0)/(0.1 – 0) = 0.5.

We need to solve the system of linear equations

0 0 0 1 1

0 0 1 0 0.1 sin 1

1 1 1 1 1.086355758991046

3 2 1 0 0.1 sin 1.086355758991046

Thus, we have

A = [0 0 0 1; 0 0 1 0; 1 1 1 1; 3 2 1 0]
 A = 0 0 0 1
 0 0 1 0
 1 1 1 1
 3 2 1 0

>> b = [1 0.1*sin(1) 1.086355758991046 0.1*sin(1.086355758991046)]'
 b = 1
 0.08414709848078966
 1.086355758991046
 0.08849356226254429

p = A \ b
 p = -0.00007085723875786790
 0.002279517749014116
 0.08414709848078966
 1

polyval(p, 0.5)
 1.042634571522804

6. Suppse you knew that y(a) = ya, y(b) = yb, y(1)(a) = ya
(1), y(1)(b) = yb

(1), y(2)(a) = ya
(2), y(2)(b) = yb

(2). Write

down the system of linear equations that would find the quintic (degree five) polynomial that satisfies these

conditions.

The quintic polynomial is p(t) = at5 + bt4 + ct3 + dt2 + et + f, and its first and second derivatives are

p(1)(t) = 5at4 + 4bt3 + 3ct2 + 2dt + e

p(2)(t) = 20at3 + 12bt2 + 6ct + 2d

Now, we scale and shift to 0 and 1 so that our algorithm can be re-used, Thus, the slopes will be modified

by h and the concavities by h2, so we have

p(0) = ya, p(1)(0) = hya
(1), p(2)(0) = h2ya

(2), p(1) = ya, p(1)(1) = hya
(1), p(2)(1) = h2ya

(2)

1

22

1

22

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 2 0 0

1 1 1 1 1 1

5 4 3 2 1 0

20 12 6 2 0 0

a

a

a

b

b

b

y

hy

h y

y

hy

h y

7. Using Euler’s method, approximate y(1) with h = 0.2 and again with h = 0.1 for the initial-value problem

defined by

1
2 1

0 1

y t y t t

y

a = 0;
b = 1;
t0 = 0;
y0 = 1;
f = @(t, y)(2*y + t - 1);
h = 0.2;
N = 5;
ts = a:h:b;
ys = zeros(1, N + 1);
ys(1) = y0;
for k = 1:N
 ys(k + 1) = ys(k) + h*f(ts(k), ys(k));
end
ys
 ys = 1 1.2 1.52 2.008 2.7312 3.7837

h = 0.1;
N = 10;
tss = a:h:b;
yss = zeros(1, N + 1);
yss(1) = y0;
for k = 1:N
 yss(k + 1) = yss(k) + h*f(tss(k), yss(k));
end
yss
 yss = 1 1.1 1.23 1.396 1.6052 1.8662 2.1895 2.5874 3.0749 3.6698 4.3938

8. In Question 7, you approximated y(0.2) with h = 0.2, and y(0.1) with h = 0.1. The correct solutions to

sixteen significant digits are y(0.2) = 1.268868523230952 and y(0.1) = 1.116052068620128. Show that the

error of one step of Euler’s method is O(h2) by showing that the error of your approximation at t = 0.1 is

approximately one quarter the error at t = 0.2.

The approximations are 1.2 and 1.1, respectively, and thus the errors are 0.068868523230952 and

0.016052068620128, and we note that the second number is approximately one quarter the first.

Acknowledgement: Mason Jing for noting a 1 – z in the Jacobian when it should have been 1 + z. Andy Liu

for noting the h and h2 were missing from the right-hand vector in Question 6. Brent Morris for pointing

out that the argument was copied wrong on Question 5.

